

# **Designing a Lightweight and Dexterous Prosthetic Hand for EMG Control**

# Introduction

### **Introduction to Prosthetic Hands**

- For many amputees, prosthetic hands are expensive, heavy, and can only perform basic hand movements.
- The average prosthetic hand costs ~ \$5000.
- The average prosthetic hand weighs 600g.



Figure 1: A 3D model of the V1 prosthetic hand design, showcasing the initial structure ar layout of components.

### **Project Objectives**

- Developing an advanced, lightweight, cost-effective, and dexterous
- prosthetic hand to improve functionality and user experience for amputees Address the limitations of existing prosthetic devices.
- Test the repeatability and consistency of the hand positions.
- Build a data set of the 5 hand positions and how they move with respect to time for the EMG model.

### V1 Goals

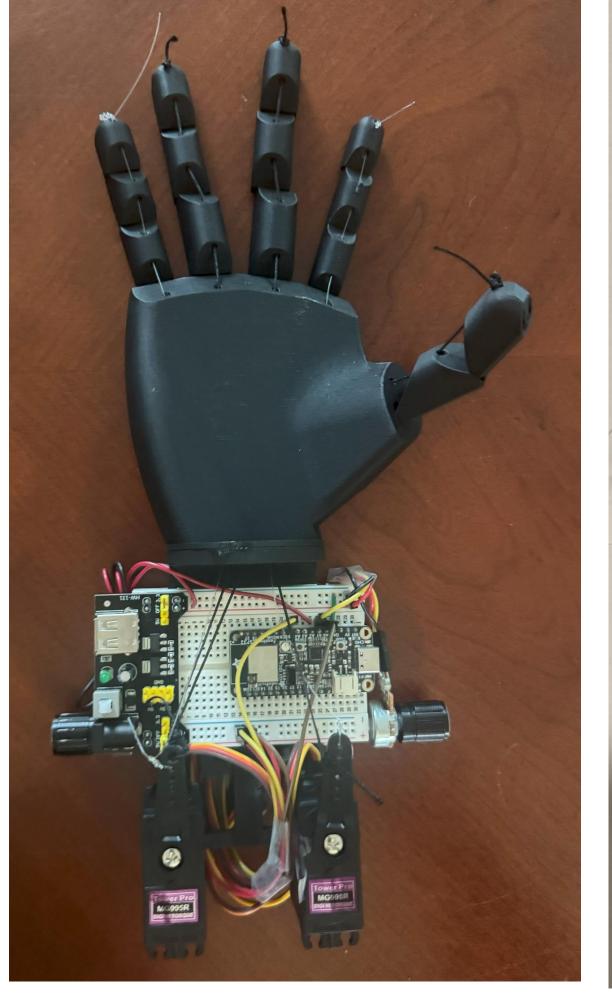
- Design a basic prosthetic hand to evaluate different grasp movements and types.
- Test and optimize finger sizing and positioning for improved functionality.
- Determine the appropriate electronics required for the hand and reduce the size of the components.
- Develop and test code to control hand movements and collect relevant performance data.

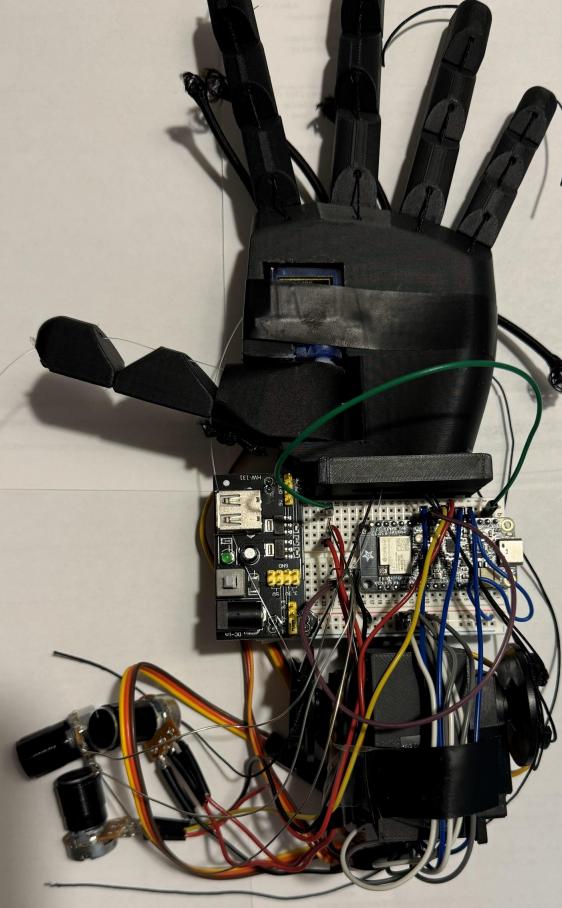
### V2 Goals

- Mount servos on the wrist brace for enhanced stability and optimal positioning.
- Further reduce and organize the electronics for a more compact and efficient design.
- Improve ball and cylindrical grasp capabilities by adding a servo to independently control thumb movement.



# Sam Orgeldinger, Xiaoli Zhang


<sup>1</sup>Department of Mechanical Engineering, Colorado School of Mines <sup>2</sup>Department of Robotics, Colorado School of Mines


|          | Methodology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ,        | <ul> <li>Design Methodology</li> <li>Utilizing SolidWorks and referencing both hand measurements and existing prosthetic designs, I modified and developed a custom prosthetic hand model.</li> <li>For fabrication, I chose carbon fiber PLA to ensure the hand remained lightweight while maintaining strength and durability.</li> <li>In selecting the electronics, we opted for the ESP32 microcontroller due to its exceptional computing capabilities and selected high-torque servos to enable the hand to grasp heavier objects.</li> </ul>           |
|          | <ul> <li>Data Collection Methodology</li> <li>The code operates in two modes: Potentiometer Mode and Data Mode.</li> <li>In Potentiometer Mode, I manually adjust the hand's position and record motor encoder values.</li> <li>Data Mode moves the hand to a selected position and records motor encoder data every 50 milliseconds for 3 seconds, exporting the data in CSV format.</li> </ul>                                                                                                                                                               |
| nd<br>S. | <ul> <li>Testing &amp; Evaluation Methodology</li> <li>I analyzed the data in Excel to assess the repeatability and consistency of each grasp type.</li> <li>I collected position data for each grasp type across five trials and graphed the differences to demonstrate the hand's repeatability and consistency.</li> <li>Grasp Type Methodology</li> <li>I selected five common grasp types, based on Ninapro data, that represent the most frequently used hand positions in daily activities and can be easily replicated by prosthetic hands.</li> </ul> |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# V1 & V2 Design

V1 Design

V2 Design





Figures 3 & 4: Finalized and original prosthetic hand designs, with V1 shown on the left and V2 on the right, highlighting the progression in design and functionality.

# Grasp Type Data

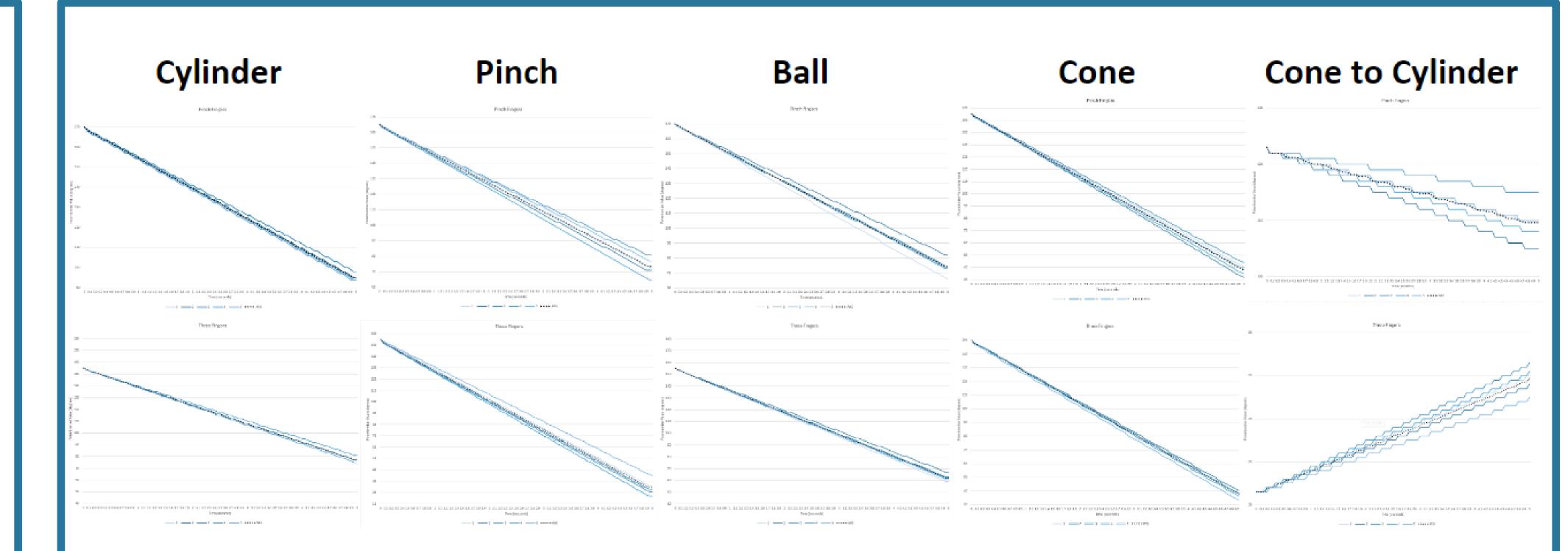



Figure 5: Illustrates the precision of the selected grasp types, showing how the prosthetic hand maintains each grasp over a 3-second interval. The data points represent the hand's position accuracy at time intervals, showing any deviations in motor control.

| Component            | Qty | Price          | <b>Total Price</b> |
|----------------------|-----|----------------|--------------------|
| High Torque Servo    | 2   | \$19.95        | \$39.90            |
| 3.3v Servo           | 1   | \$5.95         | \$5.95             |
| ESP32 v2             | 1   | \$19.95        | <b>\$19.95</b>     |
| Breadboard           | 1   | \$2.90         | \$2.90             |
| Potentiometer        | 3   | \$2.95         | \$8.85             |
| Wires                | 25  | \$0.03         | \$0.75             |
| Nylon Paracoord (ft) | 5   | \$0.14         | \$0.70             |
| Shock Coord (ft)     | 4   | <b>\$</b> 0.18 | \$0.72             |
| 3d Print (grams)     | 90  | \$0.04         | \$3.15             |
| Power Supply         | 1   | \$5.49         | \$5.49             |
|                      |     | Total          | \$88.36            |

Figure 6: Shows the cost breakdown of the final prosthetic hand design.

# **Conclusion and Future Directions**

# **Key Findings**

- The prosthetic hand weighs 348 grams, 42.27% lighter than the models on the market. The material cost is \$88.36, 56.59 times cheaper than the average model.
- The data collected was significant in ensuring the prosthetic hand's consistency and repeatability through extensive testing and refinement. Each
- The hand, as the first two-servo prosthetic that can rotate objects without using a wrist joint, represents a significant leap forward in the field of prosthetics.

## **Future Directions**

- Gather data and do more extensive testing with the new prosthetic hand design.
- Print custom circuit boards to further size down and simplify the electronics.
- Test the hand with the EMG model and combine the hand data with the EMG data.

**References and Acknowledgements** 

Ninapro. (n.d.). https://ninapro.hevs.ch/instructions/DB1.html

Performance characteristics of anthropomorphic prosthetic ... (n.d.). https://www.eng.yale.edu/grablab/pubs/Belter\_ICORR2011.pdf





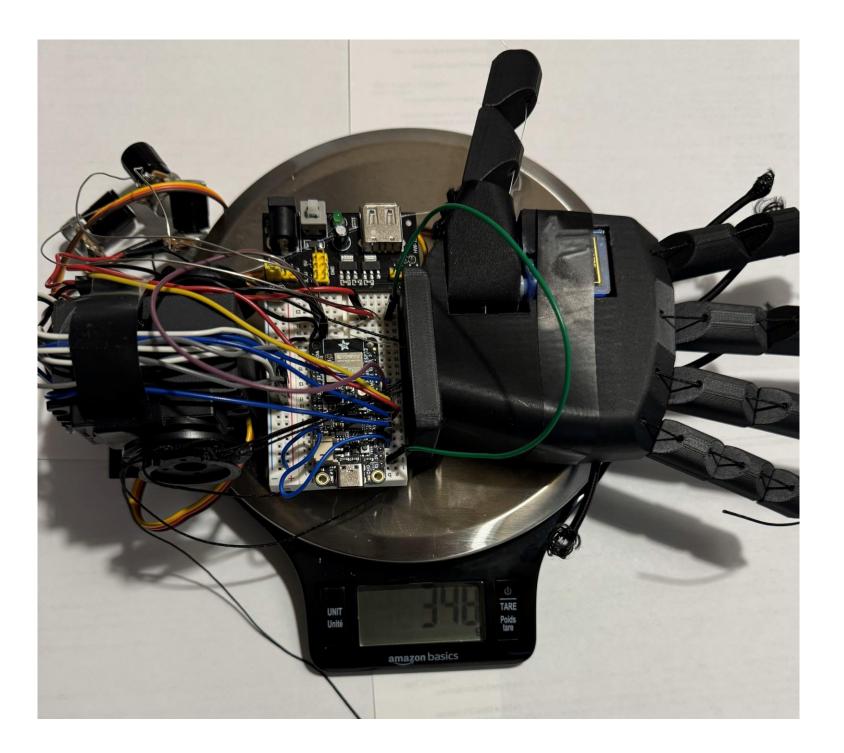



Figure 7: Shows the weight in grams of the final hand design