Novel Synthesis of PVBCl-b-PE-b-PVBCl Copolymer for Improved Stability in Water Electrolysis

Liam Carroll, Andrew Herring

Background and Methods

- Due to an increased focus on hydrogen as a source of renewable energy storage, demand for more efficient water electrolysis has risen in recent years¹
- Anion exchange membrane (AEM) water electrolysis has advantages in cost and scalability
- Hydrophilic/hydrophobic domain separated polymers like PVBCl-b-PE-b-PVBCl have shown strong potential in terms of cell performance and mechanical stability^{2,3}

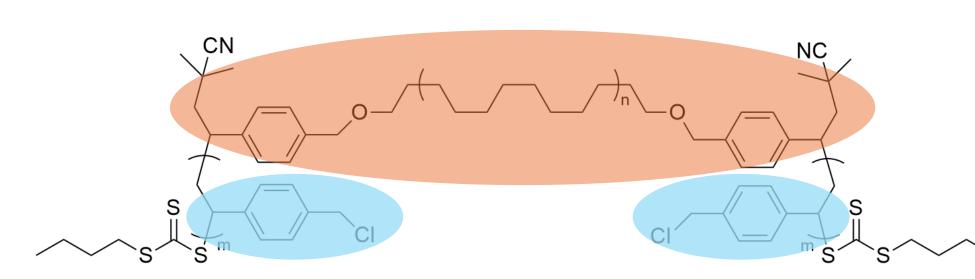
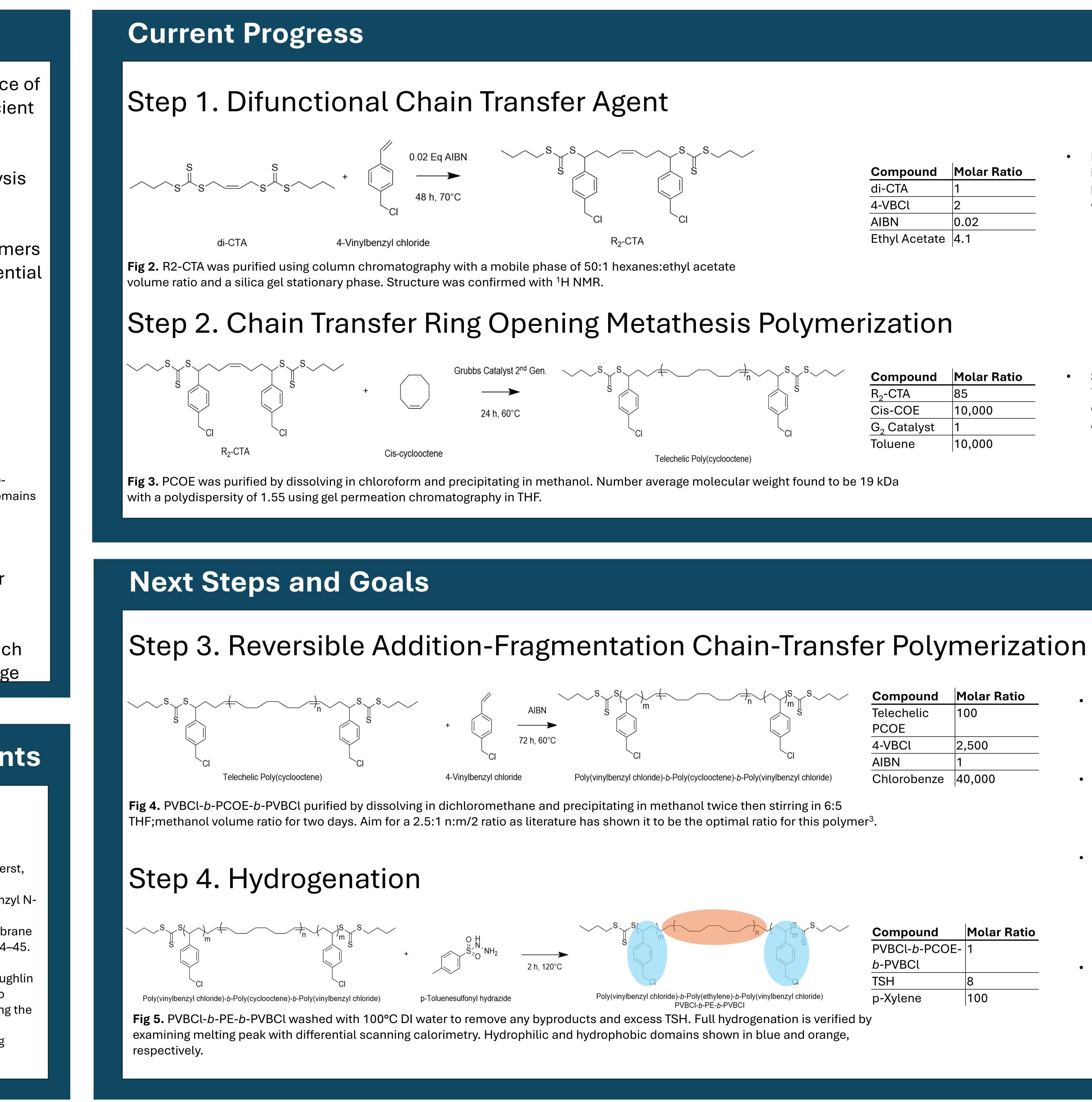


Fig 1. Previous iteration of poly(vinylbenzyl chloride)-b-poly(ethylene)-bpoly(vinylbenzyl chloride) with ether linkage. Hydrophilic and hydrophobic domains shown in blue and orange, respectively.

- Due to the alkaline environment in AEM water electrolysis devices, there are concerns the ether linkage could be susceptible to degradation
- The goal is to develop a PVBCl-b-PE-b-PVBCl which replaces the ether linkage with a methylene linkage

References and Acknowledgments

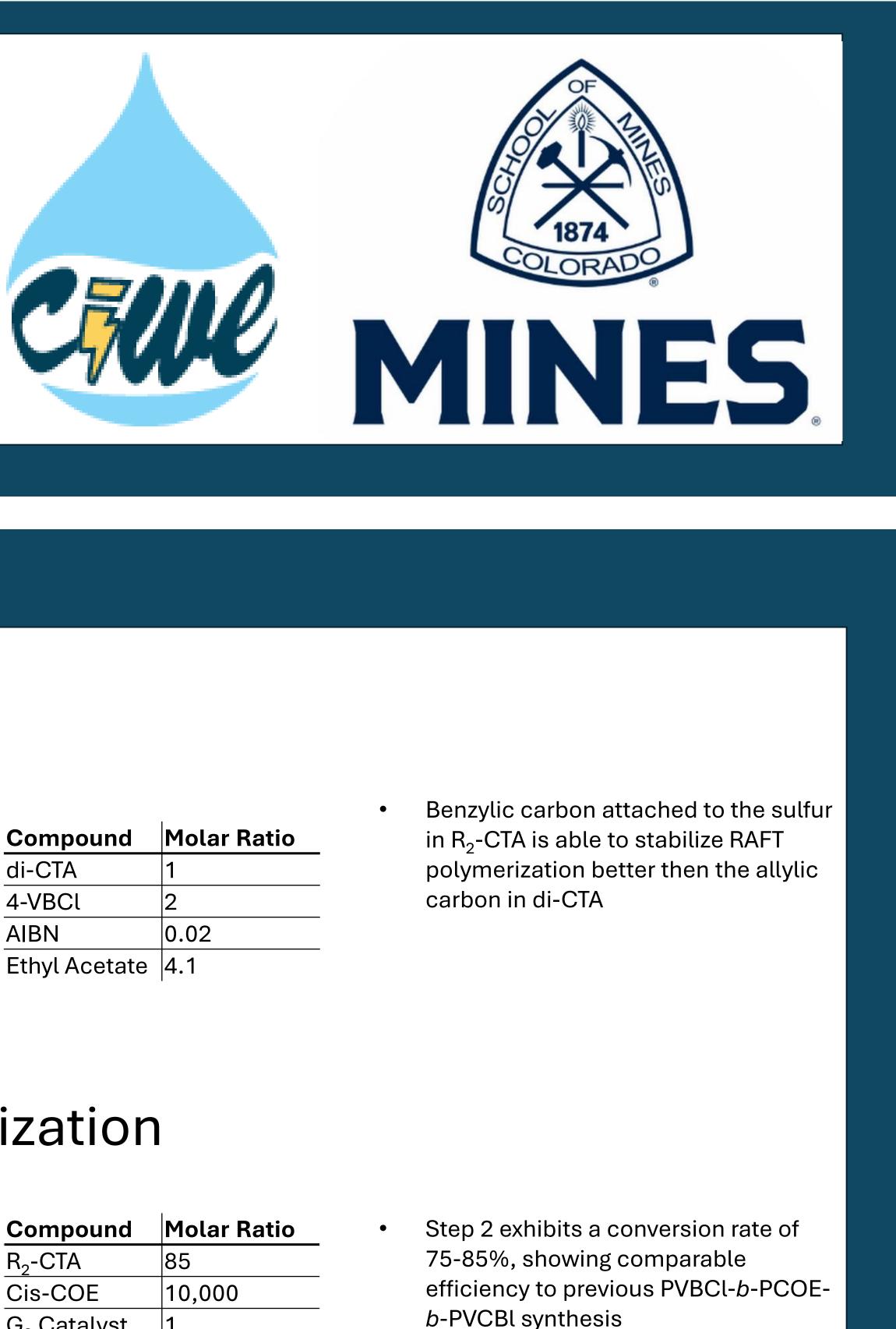

References:

- 1. Office of Energy Efficiency & Renewable Energy. *Hydrogen Shot*. Energy.gov. https://www.energy.gov/eere/fuelcells/hydrogen-shot.
- 2. Zhang, Wenxu. Synthesis and Characterization of Polymeric Anion Exchange Membranes. Ph.D. Dissertation, University of Massachusetts Amherst, Amherst, MA, 2016.
- 3. Wu, Ivy, et al. "Effects of the Hydrophobic Block Length Ratio of Poly(Vinylbenzyl N-Methylpiperidinium Carbonate)-b-Polyethylene-b-Poly(Vinylbenzyl N-Methylpiperidinium Carbonate) Block Copolymers for Anion Exchange Membrane Electrolysis." ACS Applied Polymer Materials 5, no. 8 (August 11, 2023): 5834–45.

Acknowledgements:

I would like to thank Dr. Herring for his guidance on this project, Dr. E. Bryan Coughlin and his group for their advice and providing GPC testing for our polymers, Marco Salgado and Alana Sweeney for their assistance, and Mei-Chen Kuo for supplying the necessary starting materials and her expertise. I would also like to thank the Department of Energy's Center for Ionomer-based Water Electrolysis for funding assistance.

Department of Chemical and Biological Engineering, Colorado School of Mines



Compound	Mola
di-CTA	1
4-VBCl	2
AIBN	0.02
Ethyl Acetate	4.1

Catalyst 2 nd Gen.	$\sim s_{\gamma}s_{\gamma} \leftarrow \rightarrow n$	y ^S y ^S ∕∕∕	Compound
\rightarrow	Ŝ	ŝ	R ₂ -CTA
4 h, 60°C		¥ l	Cis-COE
	CI		G ₂ Catalyst
		01	Toluene

Ratio • Post hydrogenation, polymer can b
functionalized with quaternary ammoniums to be used as ionome
or polymer electrolyte membrane
 Polymer will have same
hydrophilic/hydrophobic domain separation quality as the ether- linked iteration
 Once synthesized, polymer to be fully characterized with IEC, SAXS, water uptake, conductivity, chemical stability, mechanical
stability and cell performance and Ratio compared to ether-linked iteration
 Polymer expected to exhibit
superior stability and may allow for
improvements in cell efficiency by
allowing for thinner membranes or higher PVBCl ratios

Compound	Molar Ratio	• Post hydrogenation, polymer can be
Telechelic	100	functionalized with quaternary
PCOE 4-VBCl	2,500	ammoniums to be used as ionomer or polymer electrolyte membrane
AIBN	1	of polymer electrolyte membrane
Chlorobenze 40,000 r ³ .		 Polymer will have same hydrophilic/hydrophobic domain separation quality as the ether- linked iteration
Compound PVBCl- <i>b</i> -PCO	Molar Ratio	• Once synthesized, polymer to be fully characterized with IEC, SAXS, water uptake, conductivity, chemical stability, mechanical stability and cell performance and compared to ether-linked iteration
b-PVBCl		 Polymer expected to exhibit
TSH	8	superior stability and may allow for
p-Xylene	100	improvements in cell efficiency by
/		allowing for thinner membranes or higher PVBCl ratios

10,000

85